

The relevance of column integrated measurements in the Baltimore-Washington area during Discover-AQ

S. Crumeyrolle^{1,2}, L.D. Ziemba², G. Chen², K.L. Thornhill^{2,3}, A.J. Beyersdorf², E.L. Winstead^{2,3}, R.H. Moore^{1,2}, and B.A. Anderson²

¹NASA Postdoctoral Program, Oak Ridge Associated Universities, Oak Ridge, TN, ²NASA Langley Research Center, Hampton, VA, ³Science Systems and Applications, Inc., Hampton, VA

Email:suzanne.n.crumeyrolle@nasa.gov;Site:http://crumeyrolle.suzanne.free.fr/

Introduction & Objectives

A challenge for satellites measuring air quality is to distinguish between pollution high in the atmosphere and that near the surface where people live and breathe. In summer 2011 NASA began a multi-year airborne field campaign called Deriving Information on Surface conditions from Column and Vertically

Measurements on the NASA P-3B

- Instruments calibrated before/during/after the campaign
- Data interpolation to the same frequency (1s Merge Files)
- Estimation of the optical properties (AOD, AE, SSA) from the TSI neph 3563

				– SMPS – Scanning Mobility	
Measured Parameter	Instrument	Size (µm)	Freq (s)	Particle Sizer	
Dry Aerosol Size Distributions Aerosol Volume	TSI - SMPS	0.01 - 0.3	60	 UHSAS – Ultra-High Sensitivity Aeroso Spectrometer LAS – Laser Aeroso Spectrometer PSAP – Particle Soot Absorption Photometer PILS – Particle Into Liquid Sampler TOC – Total Organic Carbon IC – Ion Chromatography SP2 – Single Particle Soot Photometer WSOC – Water Soluble Organic Carbon 	
	DMT - UHSAS	0.06 - 1	1		
	TSI -LAS	0.09 5	1		
Dry Total Scattering Coefficient	TSI-3563	< 5	1		
f(RH) for Scattering	TSI-3563 (RH~ 80%)	< 5	1		
Total Absorption Coefficient	PSAP	< 5	1		
Aerosol WSOC concentration	PILS w/Sievers TOC	< 5	10		
Aerosol inorganic ion concentration	PILS / offline IC	< 5	240		
BC mass concentration	SP2	0.1 - 0.5	1		

Resolved **O**bservations **R**elevant to **A**ir **Q**uality (DISCOVER-AQ) to

tackle this challenge. The objectives of DISCOVER-AQ included:

- Determine the contribution of low level pollution to the AOD
- Examine the AOD contribution of the loadings versus the relative humidity
- Comparison of the ground based and integrated column measurements

RESULTS

• EPA = BAM measurements • Volume (dry) measured

Health Issues :

High AOD are not necessarily related to highest values of the N₃₋₁₀: AOD < 0.2 \rightarrow frequency > 25 %

Aldino Edgewoo Essex N₃₋₁₀ of AODP3B

References :

related to health

- 1. Carlon et al., , Infrared extinction spectra of some common liquid aerosols, Appl. Opt., 16, 1598-1605, 1977.
- 2. Chen et al. Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign, Atmos. Chem. Phys., 11, 723-740, doi:10.5194/acp-11-723-2011, 2011. Jeong et al., 2008
- Dillner et al., Measuring the Mass Extinction Efficiency of Elemental Carbon in Rural Aerosol, Aerosol Science and Technology, Volume 35, Issue 6, 2001
- 4. Kinne et al., Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D20, 4634, doi:10.1029/2001JD001253, 2003
- 5. Shinozuka et al., Aircraft profiles of aerosol microphysics and optical properties over North America: Aerosol optical depth and its association with PM2.5 and water uptake, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, D12S20, 2007
- 6. Turpin & Lim, Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass, Aerosol Science and Technology, 35, pp 602–610, 2001.

Acknowledgement

This research was funded by NASA's Earth Venture-1 Program through the Earth System Science Pathfinder Program Office. We wish to thank the ESSP Program Office for their support throughout the first DISCOVER-AQ deployment. We would also like to express our deep appreciation to Dr. Mary Kleb as well as the pilots and flight crews of NASA's P-3B and UC-12 for their important contributions. Finally, we would like to thank the Maryland Department of Environment and EPA for making the PM2.5 measurements and sharing data with DISCOVER-AQ.

Conclusions PM2.5 measured at the ground and derived from the dry size distribution are comparable

- The aerosol density is believed to be close to 1.2 gcm³ during the whole campaign
- MEE is calculated in between 4.8-6.2 m^2g^{-1} corresponding to the values reported in the literature for urban aerosol / sulfate
- The lower layers (< 1.5 km) contribute to more than 60% of the total AOD
- The highest AOD values (> 0.4) are driven by the relative humidity
- The calculation of the AOD from the PM2.5 seems to be comparable with the one found in the literature

